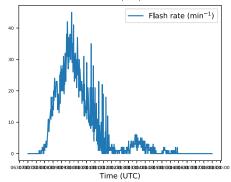
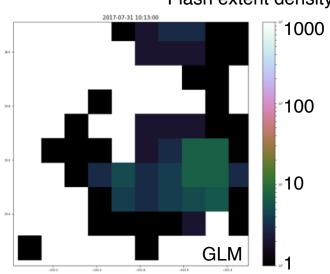
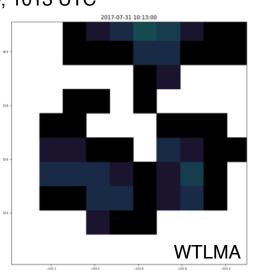

A Python GLM reader supporting flash gridding and time series analyses using Imatools

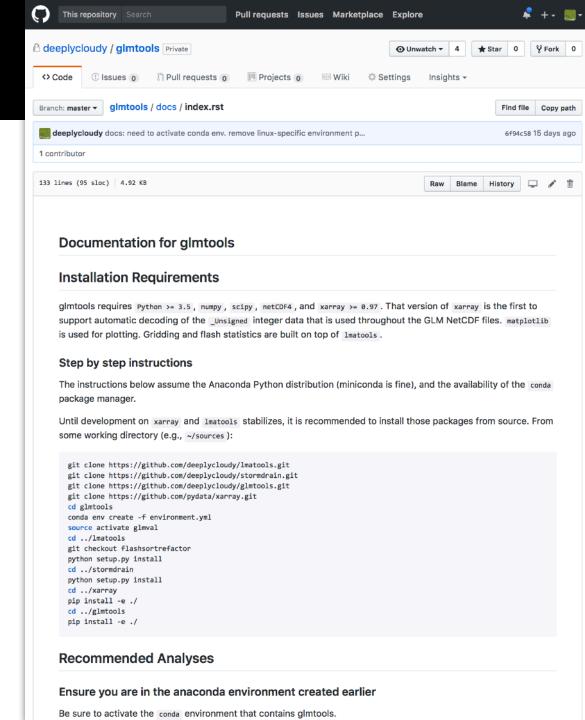

Eric Bruning
TTU Department of Geosciences
Atmospheric Science Group

GLM Science Meeting, Huntsville, AL 12-14 September, 2017

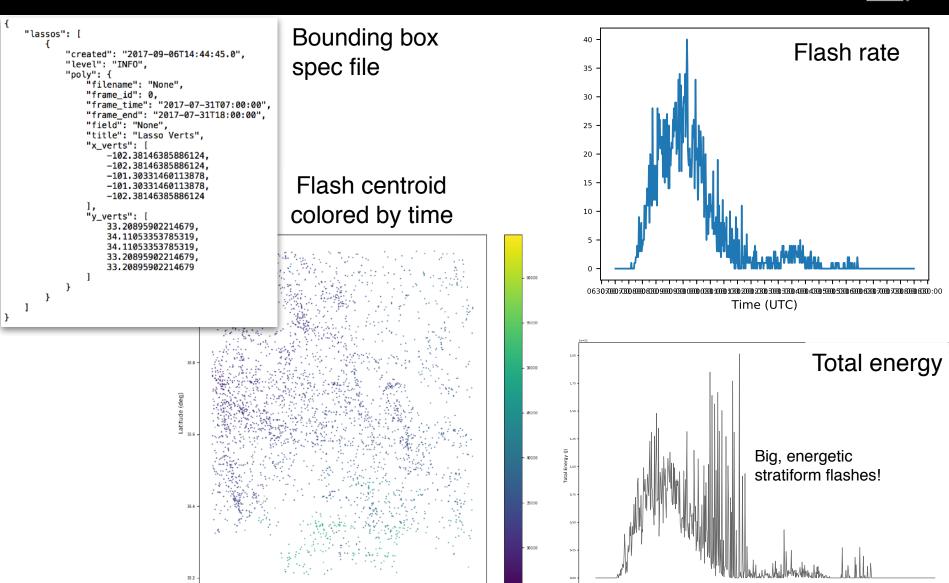

PARAMETER SPACE STUDY AND USEFUL DIAGNOSTICS FROM ONE SHELL SCRIPT



Flash extent density, 1013 UTC

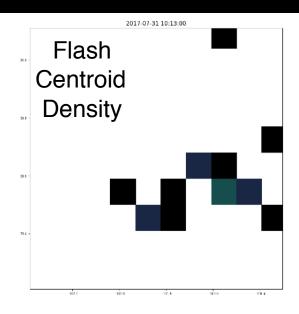


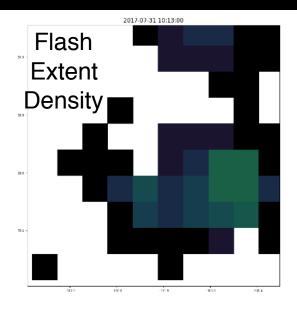

```
#!/bin/bash
export MPLBACKEND="Agg"
 export GLMGRIDSCRIPT=~/sources/glmtools/examples/grid/make_GLM_grids.py
 export GLMLASSOSCRIPT=~/sources/glmtools/examples/glm-lasso-stats.py
 export LMALASSOSCRIPT=~/sources/lmatools/examples/lasso/cell-lasso-stats.py
 export GLMSORTGRID=./GLM/
export LMASORTGRID=./LMA/
 export LASSO=lasso-WTLMA-50km.txt
export CTRLAT=33.5
export CTRLON=-101.5
export WIDTH=800
 export GLMFILES="/archive/GLM/GLM-L2-LCFA_G16/2017/Jul/31/OR_GLM-L2-LCFA_G16_s20172:
 export LMAFILES="/archive/GLM/LMA/h5_files/2017/Jul/31/LYLOUT_170731_0[7-9]*.h5 /archive/GLM/LMA/h5_files/2017/Jul/31/LYLOUT_170731_0[7-9]*.h5 /archive/GLM/LMA/h5_files/2017/Jul/31/LAUT_170731_0[7-9]*.h5 /archive/GLM/LMA/h5_files/2017/Jul/31/LAUT_170731_0[7-9]*.h5 /archive/GLM/LMA/h5_files/2017/Jul/31/LAUT_170731_0[7-9]*.h5 /archive/GLM/LMA/h5_files/2017/LAUT_170731_0[7-9]*.h5 /archive/GLM/LMA/h5_files/2017/LAUT_170731_0[7-9]*.h5 /archive/GLM/LMA/h5_files/2017/LAUT_170731_0[7-9]*.h5 /archive/GLM/LMA/h5_files/2017/LAUT_170731_0[7-9]*.h5 /archive/GLM/LAUT_170731_0[7-9]*.h5 /archive/GLM/LAUT_170731_0[7-9]*.h5 /archive/GLM/LAUT_170731_0[7-9]*.h5 /archive/GLM/LAUT_170731_0[7-9]*.h5 /archive/GLM/LAUT_170731_0[7-9]*.h5 /archive/GLM/LAUT_170701_0[7-9]*.h5 /archive/GLM/LAUT_170701_0[7
 echo "Processing LMA flashes to grid"
python $GLMGRIDSCRIPT \
        -o $LMASORTGRID/grid_files/ \
        --nevents 10 \
        --ctr_lat $CTRLAT --ctr_lon $CTRLON --width $WIDTH --height $WIDTH \
        --1ma $LMAFILES
 echo "Processing GLM flashes to grid"
 for GLMEVENTS in 1 2 4
       python $GLMGRIDSCRIPT \
                -o $GLMSORTGRID/minevent$GLMEVENTS/grid_files/ \
                --nevents $GLMEVENTS \
                --ctr_lat $CTRLAT --ctr_lon $CTRLON --width $WIDTH --height $WIDTH \
done
wait
 for LMAAREA in 1 4 16 32 64 256 1024
 # all flashes with greater than this area
        for LMAALT in 0 4 6 8 10 12 16
       # all flashes whose centroid is greater than each of these altitudes
                echo "Processing LMA flashes for area$LMAAREA_energy$LMAENERGY"
                python $LMALASSOSCRIPT -1 $LASSO -s $LMASORTGRID --skipspectra \
                        --minarea $LMAAREA --minalt $LMAALT \
                         -o LMA_area$LMAAREA\_ctralt$LMAALT \
                        $LMAFILES &
        wait
done
 for GLMEVENTS in 1 2 4
# Use GLM grids that have been filtered by min events before producing
       for GLMAREA in 0 128 256 512 1024 4096 16384
       # all flashes greater than this area
                for GLMENERGY in 0 "1.0e-14" "5.0e-14" "1.0e-13" "5.0e-13" "1.0e-12"
                # all flashes larger than this energy/radiance
                        python $GLMLASSOSCRIPT --skip3d -1 $LASSO --skipspectra \
                                -s $GLMSORTGRID/minevent$GLMEVENTS/ \
                                --nevents $GLMEVENTS --minarea $GLMAREA --minenergy $GLMENERGY \
                                -o GLM_events$GLMEVENTS\_area$GLMAREA\_energy$GLMENERGY \
                                $GLMFILES &
                wait
done
```

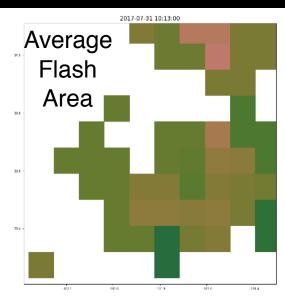

BASIC FEATURES

- GLM reader: Built-in traversal of FGE hierarchy
 - Includes converter from Mach LCFA ASCII to NetCDF
- Gridding to lat/lon, map projection, or fixed grid
- Time series trends of flash rate and properties
 - Within latitude / longitude box or moving cell lasso
- Built on Imatools, so can perform parallel analyses of both LMA and GLM data
- Improved usability: command line scripts with parameterized configuration (e.g. --ngroups 2)

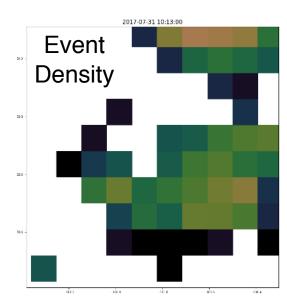
FLASH STATISTICS WITHIN BOUNDING BOX

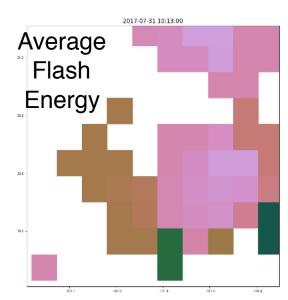





Longitude (deg)

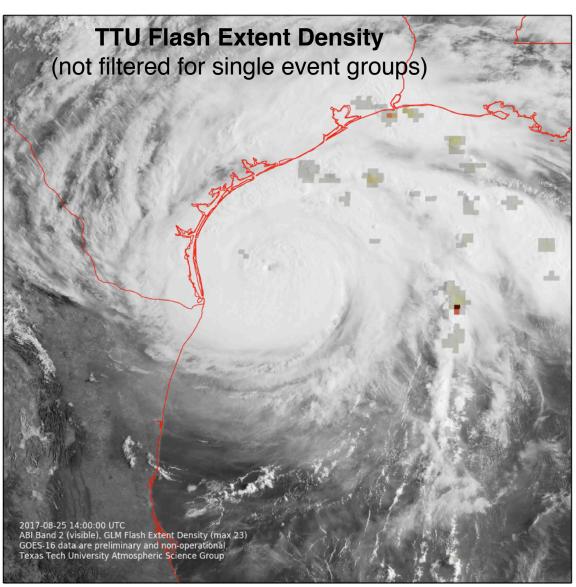
SAMPLE GRIDS





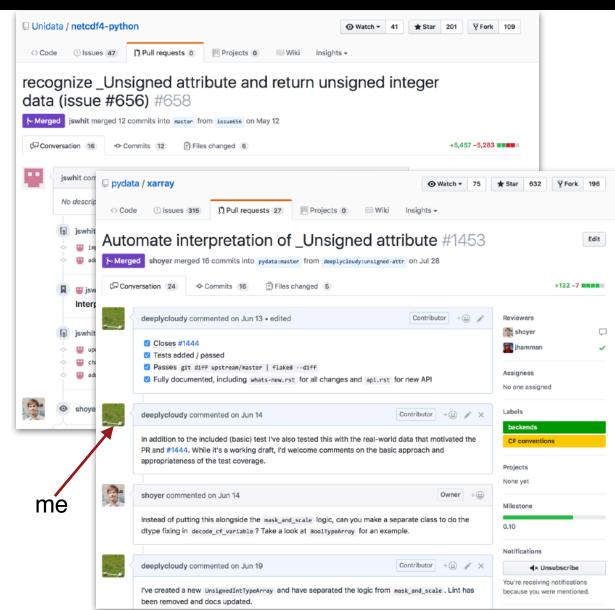
- Grids are subset and plotted within the bounding box used to calculate flash size statistics
- CSV of min/max/ percentiles of pixel statistics





HARVEY FLASH EXTENT DENSITY & ABI MESO SECTOR (DATA VIA UNIDATA GRB / AMAZON S3 TEST SERVER)

- Deep convection with mixed phase region easily distinguished from larger, less frequent extensive flashes
- Wide adoption of lightning data requires a reference for best practices to draw out these meteorological signals



ALONG THE WAY: PYTHON NETCDF LIBRARIES NOW AUTOMATE UNSIGNED CONVERSION


- NetCDF4-Python and xarray libraries
 - Patches on 12 May and 28 July 2017
- Both understand CF metadata conventions and automatically apply scale, and offset, and perform time conversion from NetCDF to Python-native types
- Patch threads contain some interesting history concerning the _Unsigned attribute from the maintainers of the NetCDF-4 libraries
- Result: reading files "just works"
 - As long as file metadata are correct

FULL USE OF GLM DATA REQUIRES USING THE HIERARCHICAL LINKAGE AMONG DIMENSIONS

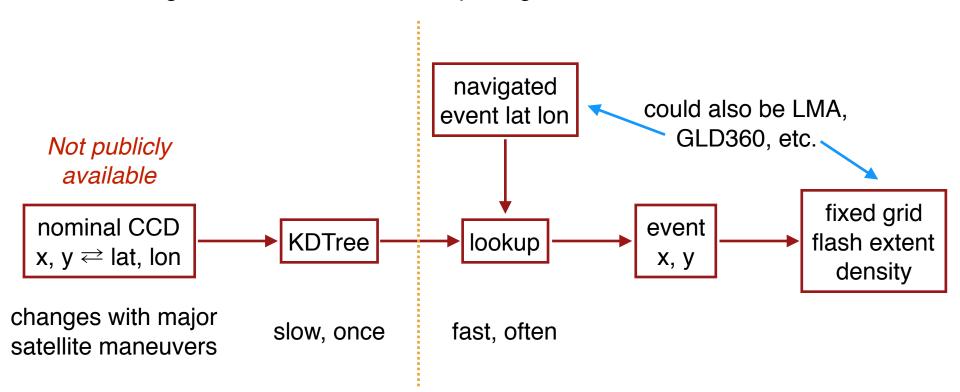
GOAL: AUTOMATE THE TRAVERSAL OF ARBITRARILY MANY LEVELS OF THE HIERARCHY

RESULT: GENERIC TRAVERSAL ALGORITHM FOR HIERARCHICALLY CLUSTERED PARENT-CHILD DATA

- "Missing" GLM variables and operations are particular cases of the general traversal operation
 - event_parent_flash_id
 Automatically calculated

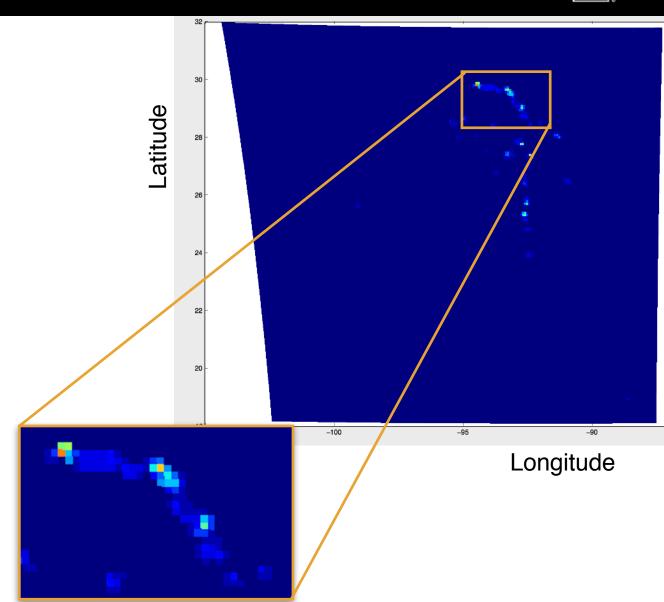
 - get_flashes_groups_events(flash_ids)
- Extensible to arbitrary levels of hierarchy
 - e.g., LIS Areas, storm cells identified by radar,
 - · GLM-associated NLDN flash and its child strokes, etc.
- Parent-child relationships are familiar as a foreign key schema in databases, but such ideas are not supported by meteorological dataset standards.
- xarray's dimension-aware indexing and groupby functionality can mimic database-like behavior

EXAMPLE: RETRIEVE DATA FOR THE 6 S FLASH NEAR LUBBOCK, TX ON 5 JULY 2017




```
from datetime import datetime
from glmtools.io.GLM import GLMDataset
                                                                                      Open GLM L2 file and
                                                           auto-calculate "missing" parent-child data
glm = GLMDataset(filename)
                                                                                                  lat, lon subset
flash data = glm.subset flashes(lon range = (-102.5, -100.93),
                                      lat range = (32.5, 34.5))
                                                                                  (min events, groups, too)
group time = flash data.group time offset
                                                                                     Index group times with
big flash duration = np.asarray(
                                                                                                human-friendly
                              (datetime(2017,7,5,4,21,19),
                                                                                                      datetime
                               datetime(2017,7,5,4,21,26))).astype('datetime64[ns]')
big flash sel = ( (group time >= big flash duration[0]) &
                     (group time <= big flash duration[1]) )
flash ids = np.unique(flash data.group parent flash id[big flash sel])
                                                                                                  Find flash IDs
flash data = glm.get flashes(flash ids)
                                                                         Get FGE data for these flashes
print(flash data)
<xarray.Dataset>
                                  (number of events: 8349, number of field of view bounds: 2, number of flashes: 307, number of groups: 2043,
number of time bounds: 2, number of wavelength bounds: 2)
Coordinates:
 * number of flashes
                                  (number_of_flashes) MultiIndex
 - flash id
                                  (number of flashes) int64 51893 ...
 - flash time offset of first event
                                  (number of flashes) datetime64[ns] 2017-07-05T04:21:19.912000 ...
  - flash time offset of last event
                                  (number of flashes) datetime64[ns] 2017-07-05T04:21:20.082000 ...
 - flash lat
                                  (number of flashes) float64 33.48 ...
  - flash lon
                                  (number of flashes) float64 -101.5 ...
  * number of groups
                                  (number of groups) MultiIndex
 - group parent flash id
                                  (number of groups) int64 51893 ...
  - group id
                                  (number of groups) int64 1000669504 ...
```

ONE APPROACH FOR RECONSTRUCTION OF PIXEL ID INFORMATION


- Pixel ID information not supplied in products
 - Needed for operations: want to avoid choosing 8 vs. 9 vs. 10 km grid resolution
- Can be reconstructed if nominal fixed grid is known
- KDTree allows for definition of arbitrarily stretched grid, including a GLM fixed grid matched to the CCD spacing

FIXED GRID PROTOTYPE FOR GLM DATA

- Hierarchical traversal plus x,y lookup gives flash extent density on fixed grid
- Implemented as a command line switch in generalpurpose gridding script

FUTURE PLANS

- Working prototype of fixed grid suitable for NWS and science needs
- Package implements and automates many of the common operations needed for cal/val, science, R3, R20, etc, and can be used for bulk processing
- Intend to open-source these tools by the AMS annual meeting in January
- Private repository (unless you tell me to open-source it now), but I'm glad to give you access. Send me your GitHub username.
- A secondary goal of this tool is to support the long game: how do we encourage (correct, quality-controlled) usage of lightning data by nonspecialists?